Proof of the Combinatorial Kirillov-reshetikhin Conjecture

نویسنده

  • R. KEDEM
چکیده

In this paper we give a direct proof of the equality of certain generating function associated with tensor product multiplicities of Kirillov-Reshetikhin modules for each simple Lie algebra g. Together with the theorems of Nakajima and Hernandez, this gives the proof of the combinatorial version of the Kirillov-Reshetikhin conjecture, which gives tensor product multiplicities in terms of restricted fermionic summations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crystal interpretation of Kerov–Kirillov–Reshetikhin bijection II. Proof for sln case

In proving the Fermionic formulae, a combinatorial bijection called the Kerov–Kirillov–Reshetikhin (KKR) bijection plays the central role. It is a bijection between the set of highest paths and the set of rigged configurations. In this paper, we give a proof of crystal theoretic reformulation of the KKR bijection. It is the main claim of Part I written by A. Kuniba, M. Okado, T. Takagi, Y. Yama...

متن کامل

Schur Positivity and Kirillov–Reshetikhin Modules

In this note, inspired by the proof of the Kirillov–Reshetikhin conjecture, we consider tensor products of Kirillov–Reshetikhin modules of a fixed node and various level. We fix a positive integer and attach to each of its partitions such a tensor product. We show that there exists an embedding of the tensor products, with respect to the classical structure, along with the reverse dominance rel...

متن کامل

Combinatorial decompositions, Kirillov-Reshetikhin invariants and the Volume Conjecture for hyperbolic polyhedra

We suggest a method of computing volume for a simple polytope P in three-dimensional hyperbolic space H. This method combines the combinatorial reduction of P as a trivalent graph Γ (the 1-skeleton of P ) by I −H , or Whitehead, moves (together with shrinking of triangular faces) aligned with its geometric splitting into generalised tetrahedra. With each decomposition (under some conditions) we...

متن کامل

Fusion Products of Kirillov-reshetikhin Modules and Fermionic Multiplicity Formulas

We give a complete description of the graded multiplicity space which appears in the Feigin-Loktev fusion product [FL99] of graded Kirillov-Reshetikhin modules for all simple Lie algebras. This construction is used to obtain an upper bound formula for the fusion coefficients in these cases. The formula generalizes the case of g = Ar [AKS06], where the multiplicities are generalized Kostka polyn...

متن کامل

Combinatorial Structure of Finite Dimensional Representations of Yangians: the Simply-Laced Case

We compute the decomposition of representations of Yangians into g-modules for simply-laced g. The decomposition has an interesting combinatorial tree structure. Results depend on a conjecture of Kirillov and Reshetikhin.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007